- 216.83 KB
- 2022-04-22 13:42:11 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'˖ڍመڙጲhttp://www.paper.edu.cn对称线性Gr-范畴中的李代数黄华林1,杨毓萍21华侨大学数学科学学院,泉州 3620212西南大学数学与统计学院,重庆 400715摘要:本文中,我们主要关注那些具有非平凡结合性质的对称线性Gr-范畴中的李代数。这些李代数乃是具有一般结合线性GR范畴中的color李代数的自然对应。我们给出在对称线性GR范畴中李代数的约化形式,并且对一般李代数、李超代数和color李代数的统一形式的PBW定理。关键词:李代数,对称范畴,辫子,上循环,GR范畴中图分类号:O153,O154LIEALGEBRASINSYMMETRICLINEARGR-CATEGORIESHua-LinHuang1,YupingYang21SchoolofMathematicalSciences,HuaqiaoUniversity,Quanzhou3620212SchoolofMathematicsandStatistics,SouthwestUniversity,Chongqing400715Abstract:Inthispaper,westudyLiealgebrasinsymmetriclinearGr-categorieswithfocusonthosewithnontrivialassociativityconstraints.SuchLiealgebrasarenaturalcounterpartsofthewellknownLiecoloralgebraswhichliveinlinearGr-categorieswithassociativityisomorphismsbeingidentity.WegivethereducedformoftheLiealgebrasinsymmetriclinearGR-categoryandprovethePBWtheoremwhichisaunifiedformofthatforordinaryLiealgebras,LiesuperalgebrasandLiecoloralgebras.Keywords:Liealgebra,symmetriccategory,braiding,cocycle,Gr-categoryFoundations:SRFDP20130131110001AuthorIntroduction:Hua-LinHuang(1975-),male,professor,majorresearchdirection:algebra,Email:hualin.huang@hqu.edu.cn.Correspondenceauthor:YupingYang(1987-),male,assistantprofessor,majorresearchdi-rection:algebra,Email:yupingyang@swu.edu.cn.-1-
˖ڍመڙጲhttp://www.paper.edu.cn0IntroductionBraidedtensorcategoriesareinterestedmainlybecauseofthedeepconnectionwithquantumgroupsandphysics.Ontheonehand,alargeclassesofbraidedtensorcategoriesisrepresentationcategoriesofHopfalgebrasandhencethestructureofsuchcategoriescanbeinvestigatedbystudyingthecorrespondingHopfalgebras;ontheanotherhand,thestructureofBraidedtensorcategoriesandthealgebrasinBraidedtensorcategoriesprovidemuchinformationoftherepresentationsandstructuretheoriesofHopfalgebras.ItiswellknownthatthebraidingofBraidedtensorcategoriesprovidesystematicsolutionsofYang-Baxterequation,andthisisoneofthemainreasonswhyBraidedtensorcategoriesandquantumgroupsarewidelyappliedinphysicsandintegrablesystems.Symmetriccategoryisabraidedtensorcategorywithsymmetricbraiding,itisimportantbecauseofavarietyofsymmetriescanbeprovidedfromSymmetriccategories.Inthispaper,westudyLiealgebrasinsymmetriccategories.BraidedlinearGr-categoriesarethemostwidelyusedbraidedtensorcategories.ByalinearGr-categorywemeansatensorcategoryconsistsoffinitedimensionvectorspacesgradedbyagroupGwithusualtensorproductandwithassociativeconstraintgivenbya3-cocycle.Inrecentwork,[1]givesacompletepresentationofthestructuresofbraidedlinearGr-categorieswhenGisabelian,hencethestructureofsymmetriclinearGr-categorycanbecounted.Withthishelp,muchmoreinformationandpropertiesofLiealgebrasinsymmetriclinearGr-categoriescanbeobtainedalthoughwewanttoestablishageneraltheoryofLiealgebrasinabstractsymmetriccategoriesinthispaper.OnecanalsoseethattheordinaryLiealgebras,LiesuperalgebrasandcolorLiealgebrasareallspecialcasesofLiealgebrasinsymmetriclinearGr-categoriesinsection3.1.thereisalonghistoryofthegeneralizationworkofLiealgebras.Liesuperalgebras[2]asfirstgeneralizationofLiealgebras,hasturnedouttobeapowerfultoolinmanycomponentsofmathsandphysicsbecauseofthesupersymmetryiswidelyusedintheseareas.AfterLiesuperalgebras,thegeneralizationisLiecoloralgebras.ThisconceptisassociatedwithanabstractgroupG,andwhenthegroupisZ2wecomebacktotheconceptofLiesuperalgebras,fordetailsthereaderisreferredto[3].TheconceptofLiealgebrasinsymmetriccategoriescanbeseenasthegeneralizationofLiecoloralgebras.TheconceptofLiealgebrasinsymmetriccategoriesorbraidedtensorcategoriesalsoappearedforalongtime.[4]givestheconceptofLiealgebrasinbraidedtensorcategorieswithtrivialassociativeconstraint,hisLiealgebrashaven-arymultiplicationsbetweenvarious-2-
˖ڍመڙጲhttp://www.paper.edu.cngradedcomponents.[5]givestheconceptofLiealgebrasinsymmetriccategoriesbutalsowithtrivialassociativeconstraint.Liealgebrasinabstractsymmetriccategoriescanbefoundfirstlyin[6],inthispaper,themainworkistoinvestigatetherelationsbetweensimpleLiealgebrasandquasisimpleLiealgebrasinthecategoriesandproveWestbury’sconjectureforK3-surface.Inthispaper,wemainlyinvestigatethepropertiesofLiealgebrasinsymmetriccategoriessimilartothatofclassicalLiealgebrasandLiesuperalgebras,suchasPBWtheoremandtherelationswithassociativealgebras.Thefollowingisadetaileddescriptionofthepaper.Insection2weintroducesomenecessarydefinitionsandfactsaboutbraidedtensorcategories.Insection3,wegivetheconceptofLiealgebrasandassociativealgebrasinsymmetriccategories,somebasicpropertiesofsuchLiealgebrasandassociativealgebrasareinvestigated.Insection4,weprovethatbraidedtensorfunctorpreservesLiealgebrastructure,andgiveareducedformofLiealgebrasinsymmetriclinearGr-categories.Insection5,representationsaredefined,andaPBWtypetheoremisprovedfortheLiealgebrasinsymmetriclinearGr-categories.1SymmetriccategoriesInthissection,werecallsomebasicdefinitionsonsymmetriccategoriesandinvestigatethesymmetricstructureofsymmetriclinearGr-categories.Thereaderisreferredto[7,8]and[1]fordetailsofsymmetriccategoriesandbraidedlinearGr-categoryrespectively.1.1symmetriccategoriesThroughoutthispaper,tensorcategorywillalwaysmeanamonoidalK-linearcategory,thatistosaytheobjectsofthecategoryareK-vectorspaces.Moreover,weassumethattheunitobjectsofthecategoriesarefieldKandtheleftandrightunitconstraintareidentities.Withtheseassumptions,tensorcategorycanbepresentedbyatriple(C,,a)whereadenotetheassociativityconstraint.ThatistosayforanyobjectsU,V,WofC,thereexistsanaturalisomorphismaU,V,W:(UV)W !U(VW)-3-
˖ڍመڙጲhttp://www.paper.edu.cninthecategorysuchthatthediagramsaU,V,W/(UV)WU(VW)(1.1)(f⊗g)⊗hf⊗(g⊗h)a′′′U′,V′,W′/U(VW)(UV)WandaU,V,W⊗idX/((UV)W)X(U(VW))X(1.2)aU⊗V,W,X(UV)(WX)aU,V⊗W,XaU,V,W⊗XidoU⊗aV,W,XU(V(WX))U((VW)X)commutewheneverf,g,haremorphismsinthecategoryandXisanyobject.Symmetriccategoryisatensorcategorywithasymmetricbraidingt.RecallthattisasymmetricbraidingifthereisanaturalfamilyofisomorphismstU,V:UV !VUindexedbyallcouples(U,V)ofobjectsinCsuchthattV,UtU,V=idU⊗VandthediagramstU,V⊗W/(VW)UU(VW)(1.3)lll6RRRRaU,V,WllllRRaV,W,UllllRRRRllRRR((UV)WV(WU)RRRRlll6RtRU,V⊗idWidV⊗tU,WllllRRRRllllRRR(llaV,U,W/V(UW)(VU)WandtU⊗V,W/W(UV)(UV)W(1.4)a−1lll6RRRRa−1U,V,WllllRRRW,U,VRllllRRRRllR(U(VW)(WU)VRRRRlll6RidRU⊗tV,WtU,W⊗idllVllRRRRllllRRR(a−1llU,W,V/(UW)VU(WV)commuteforallobjectsU,V,Wofthecategory.-4-
˖ڍመڙጲhttp://www.paper.edu.cn1.2BraidedtensorfunctorNowlet(C,,a,t)and(C′,,a′,t′)aretwosymmetriccategories,(ϕ,φ)isbraidedtensorfunctorfromCtoC′ifϕisafunctorofthetwocategoriesandforallobjectsU,V,WofC,thereisanaturalisomorphismφU,V:ϕ(U)ϕ(V) !ϕ(UV)ofC′suchthatthefollowingtwodiagramscommute:′aϕ(U),ϕ(V),ϕ(W)(ϕ(U)ϕ(V))ϕ(W)/ϕ(U)(ϕ(V)ϕ(W))(1.5)φU,V⊗idϕ(W)idϕ(U)⊗φV,Wϕ(UV)ϕ(W)ϕ(U)ϕ(VW)φU⊗V,WφU,V⊗Wϕ(aU,V,W)/ϕ(U(VW)),ϕ((UV)W)′tϕ(U),ϕ(V)ϕ(U)ϕ(V)/ϕ(V)ϕ(U)(1.6)φU,VφV,Uϕ(tU,V)/ϕ(VU).ϕ(UV)1.3symmetriclinearGr-categoryInthissubsectionweintroducesomeusefulresultsaboutsymmetriclinearGr-categories.Mostofthedetailswillbefoundin[1]and[9].ωLetGbeagroup.ByalinearGr-categoryoverGwemeanatensorcategoryVecGconsistsoffinitedimensionalvectorspacesgradedbyGwiththeusualtensorproductandwithassociativityconstraintgivenbya3-cocycleωonG.Inthispaper,wealwaysletGbeanabeliangroup.ωForallabeliangroupG,thebraidstructureofVecGwasclassifiedin[1].Recallthatafunctionω:GGG7!K∗iscalled3-cocycleifω(ef,g,h)ω(e,f,gh)=ω(e,f,g)ω(e,fg,h)ω(f,g,h)(1.7)foralle,f,g,h2G,anditiscallednormalizedifω(f,1,g)=1foranyf,g2G.TheassociativityconstraintisdeterminedbyaU,V,W((uv)w)=ω(x,y,z)u(vw)for-5-
˖ڍመڙጲhttp://www.paper.edu.cnu2Ux,v2Vy,w2Wzwherex,y,z2G.SinceGisabeliangroup,wecanalwayssetG=Zm1Zmn.LetgithegeneratorofZmiandζmbeaprimitivem-throotofunit.DefineAbethesetofallintegersequences(α1,,αl,,αn,α12,aij,,αn−1,n,α123,arst,,αn−2,n−1,n)(1.8)suchthat0αl